Fractional elliptic systems with critical nonlinearities

نویسندگان

چکیده

In this paper we study positive solutions to the following nonlocal system of equations: \begin{equation*} \left\{\begin{aligned} &(-\Delta)^s u = \frac{\alpha}{2_s^*}|u|^{\alpha-2}u|v|^{\beta}+f(x)\;\;\text{in}\;\mathbb{R}^{N}, v \frac{\beta}{2_s^*}|v|^{\beta-2}v|u|^{\alpha}+g(x)\;\;\text{in}\;\mathbb{R}^{N}, & \qquad u, \, >0\, \mbox{ in }\,\mathbb{R}^{N}, \end{aligned} \right. \end{equation*} where $N>2s$, $\alpha,\,\beta>1$, $\alpha+\beta=2N/(N-2s)$, and $f,\, g$ are nonnegative functionals dual space $\dot{H}^s(\mathbb{R}^{N})$. When $f=0=g$, show that ground state solution above is {\it unique}. On other hand, when $f$ $g$ nontrivial with ker$(f)$=ker$(g)$, then establish existence at least two different provided $\|f\|_{(\dot{H}^s)'}$ $\|g\|_{(\dot{H}^s)'}$ small enough. Moreover, also provide a global compactness result, which gives complete description Palais-Smale sequences system.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Nehari Manifold for Fractional Systems Involving Critical Nonlinearities

We study the combined effect of concave and convex nonlinearities on the number of positive solutions for a fractional system involving critical Sobolev exponents. With the help of the Nehari manifold, we prove that the system admits at least two positive solutions when the pair of parameters (λ, μ) belongs to a suitable subset of R.

متن کامل

Elliptic Systems with Nonlinearities of Arbitrary Growth

In this paper we study the existence of nontrivial solutions for the following system of coupled semilinear Poisson equations:    −∆u = v , in Ω, −∆v = f(u) , in Ω, u = 0 and v = 0 , on ∂Ω, where Ω is a bounded domain in R . We assume that 0 < p < 2 N−2 , and the function f is superlinear and with no growth restriction (for example f(s) = s e); then the system has a nontrivial (strong) sol...

متن کامل

Quasilinear Elliptic Problems with Critical Exponents and Discontinuous Nonlinearities

Using a recent fixed point theorem in ordered Banach spaces by S. Carl and S. Heikkilä, we study the existence of weak solutions to nonlinear elliptic problems −diva(x,∇u) = f (x,u) in a bounded domain Ω ⊂ Rn with Dirichlet boundary condition. In particular, we prove that for some suitable function g , which may be discontinuous, and δ small enough, the p -Laplace equation −div(|∇u|p−2∇u) = |u|...

متن کامل

ON QUASILINEAR ELLIPTIC SYSTEMS INVOLVING MULTIPLE CRITICAL EXPONENTS

In this paper, we consider the existence of a non-trivial weaksolution to a quasilinear elliptic system involving critical Hardyexponents. The main issue of the paper is to understand thebehavior of these Palais-Smale sequences. Indeed, the principaldifficulty here is that there is an asymptotic competition betweenthe energy functional carried by the critical nonlinearities. Thenby the variatio...

متن کامل

Semilinear Elliptic Systems With Exponential Nonlinearities in Two Dimensions ∗

We establish a priori bounds for positive solutions of semilinear elliptic systems of the form 8><>>>: −∆u = g(x, v) , in Ω −∆v = f(x, u) , in Ω u > 0 , v > 0 in Ω

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinearity

سال: 2021

ISSN: ['0951-7715', '1361-6544']

DOI: https://doi.org/10.1088/1361-6544/ac24e5